EXPERIMENTING OSMOLALITY AS A CONTROL PARAMETER IN BINARY MIXTURES FOR PARENTERAL NUTRITION.

BARBIEUX A

Service de Pharmacie, Hôpital E.Herriot, Place d'Arsonval, 69437 Lyon Cedex 03

MOULSMA M.

Laboratoire de Biochimie C, Hôpital E.Herriot, Place d'Arsonval, 69437 Lyon Cedex 03

SUMMARY

The authors consider using the osmolality (Em) as a control parameter in binary mixtures for parenteral nutrition that contains glucose, amino acids and electrolytes. The osmolality measurement is based on the freezing point depression according to the Raoult's law relation. For these mixtures, they study a relation between ideal Osmolality(iO) calculated by a micro-computer software and measured osmolality by using the ordinary least squares line technique. They validate upon the interval (800 - 1700) a linear relation:

Em = 0.964 iO + 14.506; r = 0.99. The authors conclude on the practical interest in using osmolality as a control parameter.

INTRODUCTION

In parenteral nutrition binary mixtures are manufactured primary solutions: glucose, amino acids, electrolytes. Magesteries are more currently given few hours after their productions. The physicochemical controls used for their validation must therefore resort to fast

and easily applicable techniques. The measurement of osmolality (Em) based on the freezing point depression corresponds to these criteria. However it is difficult to use this parameter because of the problem met when calculating the theoretical osmolality of a complex solution. The objective of the present work is to validate an adequately precise method of determining the osmolality of binary mixtures in parenteral nutrition (BMPN); so as to define a value of reference for the control. Our approach to this issue is deliberately pragmatic in view of the quality control in pharmaceutical preparations.

<u>ABSTRACTS</u>

1-1 Osmolality measurement

Osmolality (Em) is an overall means to assess the contribution of different components of a solution in creating an osmotic pressure, in this very solution. In practice, this pressure is not measured directly. The measurement is based on: vapor tension or freezing point depression which are related to osmolality by physical laws. French pharmacopoeia advocates freezing point depression determination which is related to osmolality by RAOULT's Law (Fig 1).

1-2 Osmolality of simple solutions

For simple solutions, the osmolality (Fig.2) can be deduced from the concentration and the molal coefficient given in tables according to the concentration. The tables are different for each product. For electrolytes factor v must integrate the dissociation coefficient. The molal coefficient (Φ) ranges from 0 to 1 and its value decreases as the concentration increases. It expresses the interactive forces between the ions and / or the molecules. The "ideal osmolality" (iO) is the value of the osmolality if value 1 is given to Φ . Experimentally iO represents nothing; it is not a measurable value. In opposition, osmolality Em is called "actual osmolality".

$$Em = \frac{DT}{1.858} \cdot 1000$$

Em = osmolality in milliosmoles per kilo water (mosm/kg) ΔT = decrease of freezing point in degrees centigrades (C°)

Figure 1: RAOULT'LAW

Em (mosm/kg) = $v \cdot m \cdot \Phi = iO \cdot \Phi$

v = 1 for inionised solutes

v = number of pre-existing ions or ions formed by solvolysis from a molecule

m = molality in millimoles per kilo solvant

 Φ = molal coefficient

iO = ideal osmolality

Figure 2: OSMOLALITY OF SIMPLE SOLUTIONS

1-3 Osmolality of complex solutions

For solutions containing several products, it is practically impossible to set up tables that give Φ based on the concentrations; and therefore to predict the "actual osmolality". However, an "ideal osmolality" can be calculated according to the formula in Figure 3.

MATERIAL AND METHOD

2-1 Material

The osmolalities were measured by using an osmometer(Advanced Instrument Model 3D2). The production of the cold calories is done by the Pelletier effect. A thermometer is used as measure catheter. The freezing point is determined on the defreezing plateau. The apparatus

 $iO (mosm/kg) = \frac{\sum_{i=1}^{n} v_i.M_i}{\sum_{i=1}^{n} water_i}$

 $v_i = 1$ for inionised solutes

 v_i = number of pre-existing ions or ions formed by solvolysis from a molecule

M_i = number of de millimoles of each component water i = mass of water of each component in kg n = number of component of the solution

Figure 3: OSMOLALITY OF COMPLEXE SOLUTIONS

RECURRENCE OF THE OSMOMETER TABLE 1:

	Osmolality level					
	Low	Medium	High			
n	20	20	20			
Min	389	689	1561			
Max	410	709	1624			
Average	401,25	700,95	1583,30			
SD *	4,52	4,96	17,39			
C.V.% **	1,1%	0,7%	1,1%			

- Standard deviation
- ** Coefficient of variation

shows directly the result in mosm/kg by applying Raoult's Law. It has just one range of measures from O to 2000 and its calibration points are set at 500 and 1000. The recurrence studied on standards 400, 700 and 1600 gave variation coefficients nearing 1% in accordance with the performances instructed by the manufacturer (Tab.1).

2-2 Method

2-2-1 Sample

An aliquot (BMPN) is taken for the entire physico-chemical controls before proceeding to the filtration and the conditioning in bags. 200µl are measured on this aliquot by means of an automatic pipette, P2OO Gilson and then introduced in a cupule.

2-2-2 Measurement

The measurements are carried out after standardizing the osmometer and going through the control points. The apparatus can freeze BMPN up to osmolalities approximating 1800; beyond this, the power of Pelletier's effect is insufficient.

2-2-3 Calculation of the Ideal Osmolality for the BMPN.

The calculation is made by the NUTRIPAR software: a software designed for galenic pharmacy and practical pharmacy by our department. The calculation of the Ideal Osmolality is based on the data of primary solutions, using the formula in Figure 4.

2-3 Plan of the study

2-3-1Part I

This step aims at creating a relation Em=(iO)f which is simple, reliable and easily applicable when used in daily practice.

iO (mosm/kg) = $\frac{\sum \text{ millimoles of primary solutions}}{\sum \text{ water of primary solutions}}$

$$iO (mosm/kg) = \frac{\sum_{j=1}^{n} Or_{j}.v_{j}}{\sum_{j=1}^{n} v_{j}.(\rho_{j}-S_{j})}$$

v_i = volume in litre

Ori = Osmolarity in mosm/i

ρj = voluminal mass in kg/l

 $\hat{S_i}$ = mass of dissolved substances per litre in kg/l

Figure 4: IDEAL OSMOLALITY OF BMPN

Couples of values (iO,Em) were collected for a month so as to determine the parameters of this relation. The function of fundamental loss of least squares is used according to the following formula:

$$S(\beta_0, \beta_1, \{Em_i, Oii\}) = \sum_{i=1}^{n} e_i^2$$

With:

$$Em_i = \beta_0 + \beta_1.Oi_i + ei$$

 $Ec = Em = \beta_0 + \beta_1.Oi_i$

The parameters to be determined are β_0 and β_1

2-3-2 Part 2

The equation obtained is used to determine an estimated value Ec in function of iO. This value Ec is compared with the corresponding measured value Em, by analysing the deviations (Em - Ec). This enables us to check how good the approximation of the model is.

Table 2 : COUPLES OF VALUES (IO, Em)

N°	10	Em N° 10		10	Em	
01	779	788	45	1122	1042	
02	816	831	46	1126	1062	
03	831	853	47	1126	1074	
04	837	823	48	1130	1105	
05	848	835	49	1146	1123	
06	936	966	50	1177	1119	
07	938	943	51	1197	1191	
08	959	975	52	1203	1218	
09	963	956	53	1254	1282	
10	1006	979	54	1293	1218	
11	1006	978	55	1304	1341	
12	1007	1028	56	1304	1336	
13	1007	1015	57	1317	1237	
14	1007	1018	58	1319	1329	
15	1016	942	59	1340	1310	
16	1016	944	60	1341	1365	
17	1021	978	61	1453	1342	
18	1021	984	62	1462	1456	
19	1022	974	63	1462	1443	
20	1022	982	64	1472	1503	
21	1024	982	65	1475	1525	
22	1024	980	66	1511	1403	
23	1030	970	67	1515	1446	
24	1059	1054	68	1517	1438	
25	1059	1064	69	1517	1450	
26	1062	1054	70	1517	1481	
27	1062	1058	71	1517	1476	
28	1067	1036	72	1587	1462	
29	1070	1035	73	1589	1496	
30	1073	1020	74	1590	1574	
31	1074	1046	75	1632	1579	
32	1081	1065	76	1639	1548	
33	1081	1056	77	1640	1560	
34	1082	1045	78	1655	1642	
35	1090	1052	79	1657	1566	
36	1092	1056	80	1658	1578	
37	1093	1053	81	1661	1582	
38	1100	1048	82	1662	1574	
39	1100	1052	83	1667	1578	
40	1110	1038	84	1667	1572	
41	1116	1075	85	1699	1774	
42	1116	1098	86	1699	1782	
43	1120	1085	87	1699	1782	
44	1121	1086				

RESULTS

3-1 Part 1

The 87 couples (iO, Em) shown in table 2 range from 800 mosm/kg. The relation between Em and iO resulted from the observation and settled by the ordinary least squares technique is :

Em = 0.964 iO + 14.506

Count n = 87 $r^2 = 0.97$ r = 0.99

The adjustment of this straight line to the model therefore enables us to explain 97% of the total variability. Only 3% of the information are lost, which proves that the linear model (Fig.5) is acceptable.

3-2 Part 2

Table 3 shows the deviations (Em - Ec) obtained from 95 consecutive measurements. The graphic analysis (Fig.6) reveals a layout centered around zero whatever the zone measure. The sum of the deviations is equal to 2. The average percentage of the deviations, (Em - Ec) / Ec% is equal to 0.13%

DISCUSSION

4-1 Validity of the model

The pharmaceutical preparations are admitted by the control, if the deviation between the theoretical value and the measured value is less than 10%. In relation to this norm, the mathematical modelisation suggested appears to be sufficiently precise. However the group of measurements used to calculate the least squares line cannot be

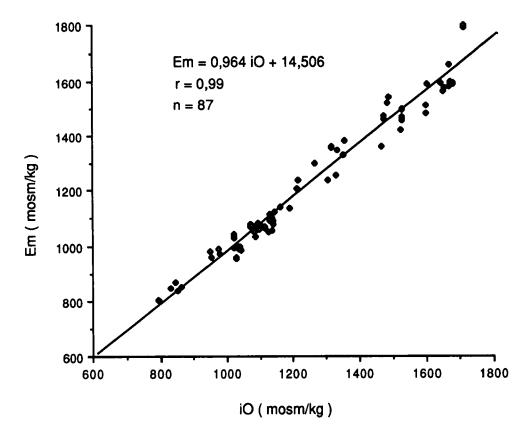


Figure 5: MODEL Em = f(iO)

TABLE 3: DEVIATIONS (Em-Ec)

N°	Ec	Em	Em-Ec	(Em-Ec)/Ec%		N°	Ec	Em	Em-Ec	(Em-Ec)/Ec%
01	1135	1044	-91	-7,99		48	879	890	11	1,23
02	1455	1358	-97	-6,65		49	925	937	12	1,24
03	1455	1362	-93	-6,37		50	901	913	12	1,29
04	967	909	-58	-5,99		51	582	590	8	1,32
05	1085	1021	-64	-5,86		52	604	614	10	1,58
06	1057	998	-59	-5,55		53	826	841	15	1,79
07	1007	953	-54	-5,40		54	932	949	17	1,79
08	821	777	-44	-5,40		55	932	949	17	1,80
09	1464	1386	-78	-5,35		56	1204	1227		1,80
10	1082	1026	-56	-5,35 -5,15		57	862	879	17	1,90
			-74			58		1098	23	
11	1464	1390		-5,08			1075			2,15
12	967	918	-49	-5,06		59	1089	1113	24	2,17
13	1464	1391	-73	-5,01		60	1192	1218	26	2,22
14	967	920	-47	-4,85		61	1321	1351	30	2,29
15	1085	1032	-53	-4,84		62	870	892	22	2,58
16	1284	1223	- 6 1	-4,76		63	1407	1444	37	2,59
17	836	797	-39	-4,65		64	1068	1096		2,61
18	758	723	-35	-4,59		65	1618	1660		2,62
19	1471	1404	-67	-4,56		66	1589	1632		2,72
20	1003	958	-45	-4,45		67	1209	1242		2,74
21	1138	1088	-50	-4,36		68	486	500		2,90
22	1464	1402	-62	-4,26		69	1010	1042		3,14
23	1046	1005	-41	-3,92		70	1366	1409		3,15
24	997	959	-38	-3,79		71	932	962		3,19
25	967	931	-36	-3,72	ł	72	906	936		3,29
26	1085	1046	-39	-3,55	l	73	1206	1246		3,32
27	1588	1534	-54	-3,39	1	74	836	865		3,49
28	1253	1211	-42	-3,37		75	1089	1131	42	3,82
29	1284	1242	-42	-3,28		76	796	828		3,98
30	1471	1434	-37	-2,52		77	1345	1401	56	4,18
31	679	663	-16	-2,31	l	78	1016	1059		4,22
32	1253	1225	-28	-2,25	ł	79	1259	1313		4,29
33	1429	1410	- 19	-1,31		80	1382	1442	60	4,31
34	660	652	- 8	-1,27		81	988	1031	43	4,34
35	588	582	- 6	-1,03		82	1648	1720	72	4,34
36	802	797	- 5	-0,64		83	1206	1259	53	4,39
37	925	920	- 5	-0,59		84	1082	1132	50	4,65
38	1334	1327		-0,54		85	1063	1114		4,76
39	588	585		-0,52		86	1628	1707	79	4,84
40	768	765		-0,44	ĺ	87	1357	1424	67	4,91
41	489	487	- 2	-0,37		88	1447	1523	76	5,25
42	758	755	- 3	-0,36		89	1534	1620	86	5,62
43	1344	1340		-0,29	1	90	1608	1700		5,72
44	646	647		0,17		91	1623	1722		6,07
45	866	870	4	0,49		92	1327	1409		6,22
46	669	675	6	0,89		93	1062	1143		7,59
47	691	699	8	1,12		94	1115	1207		8,21
<u> </u>				.,				Averag		0,13
							L	WAA! Q	(= =	V, 13

Em-Ec (mosm/kg)

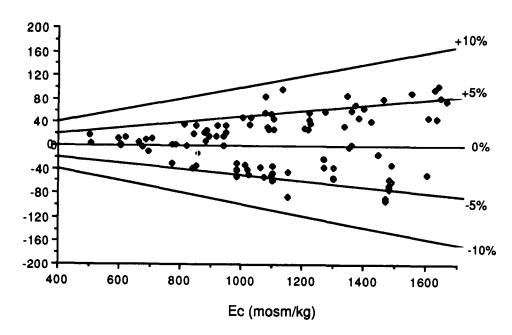


FIGURE 6: GRAPHIC ANALYSIS OF DEVIATIONS Em-Ec IN FUNCTION OF Ec

considered as a representative sample of all the BMPN. It is only a representative sample of the personalized parenteral nutritions manufactured for children and adults following the instructions of the prescription of E. Heriot Hospital. (This is demonstrated in the second part of the present work). However it is impossible to make a systematic study because of the infinite number of possible formulas for a BMPN and the great variety of primary solutions that can be used. So we advise those who wish to apply this modelisation to calculate their own least squares line.

4-2 Interpretation of the model

If the formula of the model (Em=0.964 iO + 14.506) is compared with the formula of the osmolality of a simple solution (Em = Φ iO), the

slope of the least squares line can be likened to a molal coefficient Φ . In electrolytic solutions, 0 decreases rapidly as the concentration increases. For example, for sodium chloride, 22.38 g/l concentration corresponds to 765.86 osmolality and O.914 molal coefficient. These results reveal that Φ keeps a practically constant value because of the high quantity of amino acids and glucose.

CONCLUSION

This present work demonstrates that it is possible to calculate the osmolality of a binary mixture of parenteral nutrition by using its galenic formula accurately enough to serve as value of reference for the control. Integrating all the calculations in a galenic formulation software means that this control can be done routinely. The systematic control of the osmolality contributes to the safety of the patients.

REFERENCES

- L. D. Deardorff, Am J Hosp Pharm., 37, 504 (1980)
- L. Gatlin, P. Kulkarni, A. Hussein and P.P. DeLuca, Am J Hosp Pharm., 36,1357 (1979)
- B.S.R. Murty, J.N. Kapoor and P.P. DeLuca, Am J Hosp Pharm., 33, 546 (1976)
- D.P. Wermeling, R.P. Rapp, P.P. DeLuca, and J.J. Piecoro, Jr, Am J Hosp Pharm., 42, 1739 (1985)
- P. Ambroise-Thomas in "Osmolalité", Journal Officiel de la République Française du 21 Janvier 1989, ?14 (1989)
- S. Detolle, S. Lefebvre, O. Corriol, P. Chaumont et M. Hamon., Ann. Pharm. Fr., 46, 7(1988)

